ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84) часть 3 - 12 Качество воды

Содержание материала

 

12.КАЧЕСТВО ВОДЫ

12.1. В хозяйственно-питьевом и промышленном водоснабжении используются пресные подземные воды (сухой остаток до 1000 мг/дм3), а также солоноватые подземные воды (сухой остаток 1000- 5000 мг/дм3).

12.2. Для целей производственного водоснабжения и орошения использование пресных подземных вод допускается с разрешения органов по регулированию использования и охране вод только в районах, где отсутствуют необходимые поверхностные водные источники и имеются запасы подземных вод питьевого качества в количестве, достаточном для удовлетворения потребности в хозяйственно-питьевой воде.

Требования к качеству подземных вод для производственного водоснабжения и орошения устанавливаются водопотребляющими или проектными организациями для каждого конкретного случая с учетом специфических особенностей использования вод по данному назначению.

12.3. Для целей хозяйственно-питьевого водоснабжения используются пресные подземные воды, в отдельных случаях допускается использование подземных вод с сухим остатком до 1500 мг/дм3.

Требования к качеству питьевой подземной воды, подаваемой централизованными хозяйственно-питьевыми системами водоснабжения, а также используемой одновременно для питьевых, хозяйственных, технических и коммунально-бытовых целей, регламентируются ГОСТ 2874-82.

В случае несоответствия качества подземной воды требованиям ГОСТ 2874-82 должны быть применены мероприятия по улучшению ее качества согласно СНиП 2.04.02-84 (умягчение, обезжелезивание, обеззараживание, обесфторивание и др.).

12.4. Качество воды хозяйственно-питьевого назначения должно удовлетворять гигиеническим нормам, предусматривающим безопасность воды в эпидемическом отношении, безвредность химического состава и благоприятные органолептические свойства. Соответственно этому государственным стандартом установлены следующие показатели качества воды: микробиологические; содержание токсических химических веществ; органолептические.

12.5. Безопасная в эпидемическом отношении вода не должна содержать болезнетворных бактерий и вирусов. Обычно используются косвенные микробиологические показатели безвредности воды, характеризующие степень общего загрязнения воды микроорганизмами и содержание микроорганизмов группы кишечной палочки. Общее число микроорганизмов в 1 см3 неразбавленной воды не должно превышать 100; количество микроорганизмов группы кишечной палочки не должно превышать 3 в 1 дм3 воды ("коли-индекс" ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 23 или "коли-титр" не менее 333).

В отдельных случаях, когда имеются опасения бактериального загрязнения подземных вод, кроме указанных выше косвенных микробиологических показателей определяют дополнительно содержание болезнетворных бактерий, кишечных вирусов, яиц гельминтов

12.6. Токсические химические вещества и вещества, ухудшающие органолептические свойства воды (запах, привкус, цветность), встречаются в природных подземных водах, но, кроме того, могут появиться в воде при обработке ее реагентами или могут поступить в водоносный горизонт в результате загрязнения сточными водами и отходами.

12.7. Допустимые концентрации токсических химических веществ, преимущественно встречающихся в природных водах или добавляемых к воде в процессе ее обработки, не должны превышать нормативов, приведенных в табл. 37. Радиоактивные вещества в питьевой воде нормируются в соответствии с нормами радиационной безопасности НРБ-76.

Таблица 37

Химические вещества

Допустимая концентрация (не более), мг/дм3

Алюминий остаточный (AlПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

0,5

Бериллий (BeПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

0,0002

Молибден (МоПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

0,25

Мышьяк (AsПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2 AsПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

0,05

Нитраты (по NOПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

45

Полиакриламид остаточный

2

Свинец (PbПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

0,03

Селен (SeПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

0,01

Стронций (SrПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

7

Фтор (FПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2), для климатических районов

 

I и II

1,5

III

1,2

IV

0,7

Примечание. Климатические районы принимаются в соответствии со СНиП.

12.8. Допустимые концентрации химических веществ, влияющих на органолептические свойства воды, не должны превышать нормативов, приведенных в табл. 38.

Таблица 38

Химические вещества

Допустимые концентрации (не более), мг/дм3

Сухой остаток

1000

Хлориды (С1ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

350

Сульфаты (SOПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

500

Железо (FеПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

0,3

Марганец (МпПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

0,1

Медь (СuПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

1

Цинк (ZnПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

5

Полифосфаты остаточные (POПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

3,5

Общая жесткость, мг.экв/дм3

7

Водородный показатель рН

от 6 до 9

В отдельных случаях для водопроводов, подающих воду без специальной обработки, по согласованию с органами санитарно-эпидемиологической службы допускается увеличение содержания сухого остатка до 1,5 г/дм3, общей жесткости-до 10 мг.экв/дм3, железа- до 1 мг/дм3, марганца - до 0,5 мг/дм3.

12.9. Кроме содержания химических веществ, указанных в табл. 37, 38, обязательному определению при оценке качества подземных вод подлежат показатели органолептических свойств. Требования по органолептическим показателям указаны в табл. 38а.

Таблица 38а

Показатель

Допустимые нормы, не более

Запах при 20 °С и при подогревании воды до 60 °С, баллы

2

Привкус при 20 °С, баллы

2

Цветность, град

20

Мутность, мг/дм3

1,5

В отдельных случаях по согласованию с органами санитарно< эпидемиологической службы допускается увеличение цветности воды до 35°, мутности (в паводковый период) до 2 мг/дм3.

12.10. В районах, где имеется опасность загрязнения подземных вод, в их составе, дополнительно к указанным выше веществам (см. пп 127, 128), необходимо определять специфические химические вещества, характерные для технологических и сточных вод промышленных предприятий, а также вещества, входящие в состав загрязненных поверхностных и хозяйственно-бытовых сточных вод, сельскохозяйственных удобрений, ядохимикатов и т. п. Концентрации в воде химических веществ, не указанных в табл. 37 и 38, не должны превышать предельно допустимых концентраций (ПДК), утвержденных Министерством здравоохранения СССР для воды водоемов хозяйственно-питьевого и культурно-бытового водопользования по органолептическому и санитарно-токсикологическому признаку, а также норм радиационной безопасности НРБ-76.

Перечень значений ПДК и классы опасности веществ приведены в документе "Предельно допустимые концентрации (ПДК) и ориентировочные безопасные уровни воздействия (ОБУВ) вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования". Класс опасности вещества учитывается при изучении химического состава подземных вод для выбора компонентов-индикаторов загрязнения воды. При обнаружении в воде нескольких химических веществ 1-2 класса с одинаковым лимитирующим признаком вредности (санитарно-токсикологический, органолептический) сумма отношений обнаруженных концентраций в воде к их ПДК не должна быть более 1.

12.11. Предельно допустимые концентрации некоторых наиболее часто встречающихся химических веществ, связанных с промышленным, сельскохозяйственным и хозяйственно-бытовым загрязнением, приведены в табл. 39.

Таблица 39

№ п/п.

Вещества химические

Лимитирующий признак вредности*

ПДК, мг/дм

Класс опасности

1

2

3

4

5

1

Аммиак (по азоту)

о.с.

2

3

2

Анилин

с.т.

0,1

2

3

Барий (ВаПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

с.т.

0,1

2

4

Бенз(а)пирен

с.т.

0,000005

1

5

Бензин

о.л.

0,1

3

6

Бензол

с.т.

0,5

2

7

Бор

с.т.

0,5

2

8

Бром

с.т.

0,2

2

9

Ванадий (VПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

с.т.

0,1

3

10

Висмут (BiПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

с.т.

0,1

2

11

Вольфрам (WПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

с.т.

0,05

2

12

Гидразин

с.т.

0,01

2

13

ДДТ

с.т.

0,1

2

14

Кадмий (CdПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

с.т.

0,001

2

15

Карбофос

о.л.

0,05

4

 

Керосин:

     

16

технический

о.л.

0,01

4

17

тракторный

о.л.

0,01

4

18

окисленный

о.л.

0,01

4

19

осветительный

о.л.

0,05

4

20

сульфированный

о.л.

0,1

4

21

Кобальт (СоПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

с.т.

0,1

2

22

Кремний

с.т.

10

2

23

Литий

с.т.

0,03

2

24

Некаль

о.л.

0,5

3

 

Нефть:

     

25

многосернистая

о.л.

0,1

4

26

прочая

о.л.

0,3

4

27

Никель

с.т.

0,1

3

28

Нитриты (по NО2)

с.т.

3,3

2

29

Пиридин

с.т.

0,2

2

30

Роданиды

с.т.

0,1

2

31

Ртуть (HgПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2) (для неорганических соединений)

с.т.

0,0005

1

32

Севин

о.л.

0,1

4

33

Сульфиды

о.с.

Отсутствие

3

34

Сурьма (SbПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

с.т.

0,05

2

35

Тетраэтилолово

с.т.

0,0002

1

36

Тетраэтилсвинец

с.т.

Отсутствие

1

37

Тиофос

о.л.

0,003

4

38

Фенол**

о.л.

0,001

4

 

флотореагенты

     

39

ИР-70

о.л.

Отсутствие

4

40

ААР-1

о.л.

0,001

4

41

ААР-2

о.л.

0,005

4

42

Ферроцианиды

с.т.

1,25

2

43

Фосфор элементарный

с.т.

0,0001

1

44

Хром (СгПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

о.л.

0,05

3

45

Хром (СrПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)

о.л.

0,5

3

* с. т. - санитарно-токсикологический, о. л. - органолептический, о. с. - общесанитарный.

** ПДК в размере 0,001 учитывается при применении хлора для обеззараживания воды; в иных случаях допускается содержание суммы летучих фенолов в воде в концентрации 0,1 мг/дм3.

12.12. Требования к качеству подземных вод на стадии выбора источника водоснабжения определены по ГОСТ 2761-84,

Одновременно с требованием благоприятной санитарной оценки условий залегания и формирования подземных вод, места размещения водозаборных сооружений необходимо, чтобы сухой остаток был не более 1-1,5 г/дм3, концентрация хлоридов - не более 350 мг/дм3, концентрация сульфатов - не более 500 мг/дм3; общая жесткость не более 7 мг.экв/дм3 (по согласованию с органами санитарно-эпидемиологической службы допускается до 10 мг.экв/дм3). Остальные требуемые показатели состава воды и концентрации химических веществ указаны в табл. 40; концентрации химических веществ промышленных и сельскохозяйственных загрязнителей воды не должны превышать предельно допустимые концентрации для воды хозяйственно-питьевого и культурно-бытового водопользования, а также нормы НРБ-76.

Таблица 40

Показатель

Показатель качества воды по классам

 

1

2

3

Мутность, мг/дм3, не более

1,5

1,5

10,0

Цветность, градусы, не более

20

20

50

Водородный показатель, рН

6-9

6-9

6-9

Железо (Fe), мг/дм3, не более

0,3

10

20

Марганец (Мп), мг/дм3, не более

0,1

1

2

Сероводород (H2S), мг/дм3, не более

Отсутствие

3

10

фтор (F), мг/дм3, не более

1,5-0,7*

1,5-0,7*

5

Окисляемость перманганатная, мгО2/дм3, не более

2

5

15

Число бактерий группы кишечных палочек (БГКП) в 1 дм3, не более

3

100

1000

* В зависимости от климатического района.

В табл. 40 к 1 классу отнесены воды, качество которых по всем показателям удовлетворяет требованиям ГОСТ 2874-82; ко 2 классу воды, качество которых по отдельным показателям имеет отклонения от требований ГОСТ 2874-82; они могут быть устранены аэрированием, фильтрованием, обеззараживанием; для воды 3-го класса для доведения качества воды до требований ГОСТ 2874-82 необходимы, кроме вышеупомянутых методов обработки, дополнительные методы - фильтрование с предварительным отстаиванием, использование реагентов и др. Если качество подземных вод выходят за пределы норм табл. 40 (соленые воды, воды с высоким содержанием фтора и т. п.), подземные воды могут быть использованы по согласованию с органами санитарно-эпидемиологической службы при наличии методов обработки, надежность которых подтверждена специальными технологическими и гигиеническими исследованиями.

12.13. Качество воды в водозаборах систем искусственного пополнения запасов подземных вод зависит от состава и свойств "сырой" воды источника пополнения и подземных вод ("естественной" подземной воды).

В отдельности качество "сырой" и "естественной" подземной воды по составу и свойствам может отличаться от требований ГОСТ 2874-82, но при обязательном условии, что после их полного или частичного смешения в водоносном пласте и водозаборном сооружении, а также в результате процессов физико-химического взаимодействия "сырой" воды с подземными водами и породами эксплуатируемого водоносного горизонта отбираемая вода для подачи потребителю приобретает качества, отвечающие требованиям ГОСТа,

Если это не достигается, должна выполняться соответствующая очистка "сырой" воды (до подачи ее на инфильтрацию) или последующая очистка смешанной воды после откачки ее из водозабора (перед подачей потребителю). Методы производства очистки воды указаны в СНиП 2.04.02-84.

12.14. При разведке подземных вод отбор проб для изучения качества воды выполняется из разведочных и эксплуатационных скважин при проведении из них откачек, при наблюдениях за режимом подземных вод намеченного к использованию и смежных с ним водоносных горизонтов. Отбор проб выполняется также из всех источников, поверхностных водотоков и водоемов, дренажных сооружений, горных выработок, шахтного водоотлива и других водных объектов, находящихся в зоне влияния водозабора.

Частота, количество и методы отбора проб воды, количество и виды анализов устанавливаются в зависимости от гидрогеологических, гидрохимических, санитарных условий участка с учетом целевого назначения подземных вод в соответствии с ГОСТ 18963-73*, а также ГОСТ 2874-82 и требованиями водопотребителя к качеству воды для производственного водоснабжения.

12.15. При наличии в подземных водах повышенной концентрации железа для выбора метода обезжелезивания воды при анализах необходимо обратить внимание на следующие показателя: содержание железа (общего и в том числе двухвалентного); содержание сероводорода, свободной углекислоты; рН воды; щелочность воды; перманганатную окисляемость. Для обоснования выбора метода удаления из воды марганца существенное значение имеют следующие показатели: содержание марганца, сульфатов, бикарбонатов, рН воды.

12.16. При проектировании водозаборов подземных вод необходимо ориентироваться не только на показатели качества воды, определенные на участке водозабора в период изысканий, но и на данные прогноза возможного изменения качества воды во времени, так как в условиях эксплуатации водозабора нередко наблюдается ухудшение состава отбираемой воды. Это особенно важно для районов с неоднородным химическим составом подземных вод, а также для районов, где наиболее вероятно загрязнение подземных вод (интенсивно используемые густозаселенные промышленные и сельскохозяйственные территории).

Прогноз качества воды во времени необходим для определения рационального режима эксплуатации и срока действия водозабора, а также размеров зон санитарной охраны.

12.17. Прогноз качества подземных вод выполняется на основе закономерностей движения растворенных и эмульгированных веществ в водоносных пластах, которые следуют из рассмотрения теории миграции. Определяющее влияние на скорость и дальность распространения загрязнений имеет непосредственный перенос загрязняющих веществ фильтрационным потоком; кроме того, сказывается влияние конвективной дисперсии, сорбции и других физико-химических процессов, для количественной оценки которых необходимы соответствующие экспериментальные данные.

При приближенном прогнозе качества подземных вод исходят, во-первых, из предпосылки о преобладающем поршневом характере вытеснения природных подземных вод загрязненными водами, поступающими на том или ином участке в водоносный горизонт; во-вторых, учитывается смешение подземных вод различного состава, поступающих в водоносный горизонт из отдельных источников питания как в естественных условиях, так и при действии водозаборов, фильтрации из накопителей сточных вод и т. д.

В результате прогноза должны быть определены: время tв продвижения загрязнений к водозабору от участка их поступления в горизонт; концентрация загрязняющих веществ в водозаборе Cв. Для простых схем фильтрационных потоков значения tв, и Св могут быть определены аналитическими расчетами; часть из них приведена ниже при "внутренних" источниках загрязнения, находящихся в изолированном пласте, а также при "внешних" источниках загрязнения (переток загрязненных вод в эксплуатируемый горизонт из смежного по разрезу горизонта).

В одномерном плоскопараллельном потоке подземных вод в водоносном горизонте, изолированном непроницаемыми кровлей и подошвой, время движения загрязнений по полосе тока на участке длиной L определяется по зависимости

tв = mnL/qe, (153)

где т - мощность горизонта, м; п - активная пористость; qe - погонный расход потока подземных вод, м2/сут.

Концентрация загрязняющего компонента Св в конце расчетного участка L равна концентрации в начале участка (предполагается, что в изолированном пласте смешение отсутствует и что в начале участка загрязнением охвачена вся мощность горизонта). Если одновременно с фильтрацией происходит равновесная сорбция загрязняющего вещества, то

tв = AmnL/qe, (154)

где A = (1+ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2)/ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2, ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2 - коэффициент распределения вещества между жидкой и твердой фазами. При известных значениях ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2 аналогичный сомножитель А вводится в формулу (158).

При работе линейного водозабора инфильтрационного типа, расположенного вблизи реки или водоема, когда концентрации компонента в речной воде Ср и в подземных водах на берегу Сб отличаются друг от друга, результирующая концентрация на линии водозабора Св составит

Св = (qр Ср + qб Сб)/(qр + qб), (155)

где qр и qб - расходы, поступающие в водозабор со стороны реки и со стороны берега;

qр = km(Hр-Hв)/x0; (156)

qб = km(Hк-Hв)/(xк-x0). (157)

Здесь xо - расстояние от водозабора до реки; km - водопроводимость горизонта, Hв и Hр - уровни воды в водозаборе и в реке; и xк - естественный уровень подземных вод на берегу на расстоянии xк от водозабора.

При работе одиночного или группового водозабора в изолированном пласте в удалении от реки при отсутствии естественного потока подземных вод (qe = 0) время движения загрязнений к водозабору от участка, находящегося на расстоянии rф, составит

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2, (158)

где Qв - расход водозабора; r0 - радиус водозабора.

Концентрация загрязняющего компонента в водозаборе Св определяется по формуле смешения

Св = (СчQчзQз)/Qв. (159)

где Сч, и Сз - концентрации загрязняющего компонента в чистых и загрязненных подземных водах; Qч и Qa - расходы воды, поступающие к водозабору с чистого и загрязненного участка. Значения Qч и Q3 определяются аналитическим и графоаналитическим методом с учетом размера очага загрязнения и гидрогеологических параметров пласта.

Если эксплуатируемый напорный водоносный горизонт, содержащий подземные воды хорошего качества, получает питание из вышележащего загрязненного покровного безнапорного горизонта и атмосферных осадков (двухслойный пласт), то концентрация загрязняющего компонента на одиночном или групповом водозаборе Св, определится из выражений:

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2 (160)

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2 a** = km/ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2**; ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2** = ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2п+ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2н; (161)

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2

Здесь Сп и Сн - концентрации загрязняющего компонента в верхнем питающем безнапорном и в нижнем напорном эксплуатируемом горизонтах; ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2п и ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2*н, - водоотдача верхнего питающего и нижнего эксплуатируемого слоев, km-водопроводимость эксплуатируемого напорного горизонта, Qв - расход водозабора, ro-радиус водозабора, [-Ei(-ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения) часть 2о)] -интегральная показательная функция.

При использовании подземных вод слоистой водоносной толщи, в которой напорные водоносные горизонты в хорошо проницаемых отложениях гидравлически связаны друг с другом через слабопроницаемые слои, качество воды в эксплуатируемом горизонте может со временем измениться вследствие перетекания воды из загрязненного смежного питающего слоя через слабопроницаемый слой. При достижении максимального расхода перетока концентрация загрязняющего компонента в водозаборе Се составит

Св = Сп +э - Сп) (km)э/[(km)э + (km)п], (162)

где Сэ, и Сп - концентрации загрязняющего компонента в эксплуатируемом и питающем водоносных горизонтах; (km)э и (km)n - водопроводимости этих горизонтов соответственно.

Для сложных фильтрационных потоков в неоднородных многослойных водоносных толщах, при сложных граничных условиях и других случаях для прогноза качества воды используются графоаналитические, численные методы и моделирование.

12.18. По составу и виду загрязнения подземных вод подразделяются на химические (органические и неорганические), биологические, радиоактивные и тепловые.

Наиболее крупная по масштабам инфильтрация загрязненных вод может происходить на промышленных площадках, из шламо- и хвостохранилищ, из накопителей и испарителей сточных вод, на полях орошения и полях фильтрации.

Ухудшение качества подземных вод может быть связано также с привлечением некондиционных или загрязненных подземных вод из удаленных от водозабора участков эксплуатируемого водоносного горизонта; подтягиванием высокоминерализованных подземных вод к водозабору из более глубоких частей горизонта; привлечением воды из водотоков и водоемов, загрязненных промышленными, хозяйственно-бытовыми, сельскохозяйственными стоками; инфильтрацией загрязненных сточных и атмосферных вод с застроенных промышленных и городских территорий и др.

В отдельных случаях загрязнение водоносного горизонта происходит через неисправные водозаборные, разведочные, газовые, нефтяные скважины и другие горные выработки.

12.19. В проекте водозабора должны быть освещены источники питания подземных вод, а также существующие и возможные источники загрязнения Основной эксплуатируемый водоносный пласт, смежные (по разрезу и в плане) водоносные горизонты, связанные с ними ближайшие реки, водоемы, а также хранилища бытовых и промышленных сточных вод должны быть охарактеризованы в отношении химического состава воды как по основным показателям, нормируемым ГОСТ 2874-82, так и по специфическим показателям, характеризующим сточные воды и промышленные отходы данного района, дренажный и поверхностный сток с сельскохозяйственных площадей и т. п.

12.20. Контроль за качеством подземных вод на действующих водозаборах осуществляется учреждениями и организациями, в ведении которых находятся централизованные системы хозяйственно-питьевого водоснабжения я водопроводы, используемые одновременно для хозяйственно-питьевых и технических целей. Перечень контролируемых показателей качества воды определяется с учетом местных и санитарных условий и должен быть согласован с санитарно-эпидемиологической службой.

12.21. Качество подземных вод, используемых при децентрализованном водоснабжении, регламентируют "Санитарные правила по устройству и содержанию колодцев и каптажей родников, используемых для децентрализованного и хозяйственно-питьевого водоснабжения".