ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84) часть 2

Содержание материала

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84) 

часть 2 

Документ является продолжением документа 

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84)

 

5. ГИДРОГЕОЛОГИЧЕСКИЕ РАСЧЕТЫ ВОДОЗАБОРНЫХ СКВАЖИН И ШАХТНЫХ КОЛОДЦЕВ

Общие положения

5.1. Основными задачами гидрогеологических расчетов водозаборных скважин и шахтных колодцев являются:

а) определение дебита скважин и колодцев и понижения уровня подземных вод в процессе эксплуатации водозаборного сооружения;

б) оценка возможного влияния данного водозабора на существующие или намечаемые к строительству водозаборы на других участках;

в) оценка влияния проектируемого водозабора на окружающую природную обстановку (поверхностный сток, растительность и др.).

Одновременно с решением этих задач на основе гидрогеологических расчетов уточняют схему расположения водозаборных скважин и колодцев, их количество и размеры (глубину, диаметр).

5.2. При гидрогеологических расчетах водозаборов обычно в качестве исходной величины принимается дебит Q, соответствующий проектируемому водопотреблению. Довольно часто, однако, приходится определять максимальный дебит Qмакс, который может быть получен на рассматриваемом участке водоносного пласта или на всей площади его распространения. В обоих случаях расчетами устанавливаются размеры водозаборного сооружения, количество, расположение и дебиты скважин и колодцев при заданном времени эксплуатации и максимально допустимых понижениях уровня Sдоп.

Гидрогеологические расчеты выполняются обычно для нескольких вариантов расположения водозаборов, по которым производятся технико-экономическое сопоставление и выбор оптимальной схемы водозабора.

Во всех вариантах расчетные понижения уровня сопоставляются с допустимыми понижениями.

При Sрас>Sдоп проектируемый дебит водозабора не может считаться обеспеченным. В этом случае необходимо увеличить число скважин (колодцев), уменьшив дебит каждой из них, или распределить их на большей площади.

При Sрас<Sдоп дебит водозабора может быть увеличен, а если в этом нет надобности, то может быть сокращено количество скважин (колодцев) и уменьшено расстояние между ними.

Приближенно величина допустимого понижения уровня может быть определена следующим образом:

для безнапорных вод

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.), (3)

для напорных вод

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.)], (4)

где he и Не - соответственно первоначальная глубина воды до водоупора (в безнапорных пластах) и напор над подошвой горизонта (в напорных пластах); ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.)нас и ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.)нас - максимальная глубина погружения насоса (нижней его кромки) под динамический уровень воды в скважине; ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.)ф и ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.)ф - потери напора на входе в скважину; т - мощность напорного пласта.

Гидрогеологические расчеты водозаборных сооружений могут быть сделаны при той или иной степени схематизации гидрогеологической обстановки различными методами, используемыми при оценке запасов подземных вод, а именно; гидродинамическими, гидравлическими, балансовыми, гидрогеологической аналогии, а также комбинированными.

Гидродинамические методы расчетов водозаборов основаны на аналитическом или численном решении краевых задач теории фильтрации. подземных вод. Соответственно они подразделяются на аналитические методы и методы моделирования на аналоговых (АВМ), электронных цифровых (ЭВМ) или гибридных (АЦВМ) вычислительных машинах. При достаточно простых гидрогеологических условиях (однородные фильтрационные и емкостные свойства, прямолинейные границы водоносных пластов, неизменяющиеся условия на границах) целесообразнее всего применять аналитические методы, обеспечивающие достаточную для решения практических задач точность.

В сложных гидрогеологических условиях, характеризующихся существенной неоднородностью гидрогеологических параметров, сложной конфигурацией границ пласта и контуров некондиционных вод, изменяющимися во времени источниками формирования эксплуатационных запасов, наличием нескольких взаимосвязанных водоносных горизонтов, а также при значительном количестве проектируемых водозаборов и большом числе вариантов их размещения следует применять методы моделирования.

Гидравлические методы заключаются в определении расчетного дебита водозабора или прогнозных понижений уровней в скважинах по эмпирическим данным, непосредственно полученным в процессе проведения опыта и комплексно учитывающим влияние различных факторов, определяющих режим работы водозабора.

Балансовый метод применяется при определении величины сработки естественных запасов подземных вод, а также частичного или полного перехвата водозабором расхода естественного потока и привлекаемых источников питания. Балансовый метод является приближенным методом расчета, поэтому он используется, главным образом, как дополнительный в сочетании с гидродинамическим и гидравлическим методами.

Метод гидрогеологической аналогии заключается в определении модуля эксплуатационных запасов (или отдельных его составляющих) оцениваемого водоносного горизонта, устанавливаемого в пределах наиболее изученных участков по данным детальных разведочных работ или эксплуатации действующих водозаборов Метод основан на переносе данных о режиме эксплуатации подземных вод на участках действующих водозаборов на оцениваемые участки, находящиеся в аналогичных условиях с эксплуатируемыми.

Все указанные методы расчетов производительности водозаборов подземных вод имеют свои достоинства и недостатки. Поэтому иногда целесообразным является применение комбинированных методов, т. е. совместного использования при расчетах одновременно нескольких методов.

Основные расчетные зависимости, полученные аналитическими методами для оценки производительности водозаборных скважин и колодцев, работающих в относительно простых и наиболее часто встречающихся гидрогеологических условиях, приведены для:

а) долин рек (полуограниченные пласты с прямолинейным контуром питания и пласты-полосы);

б) артезианских бассейнов (в частности, в неограниченных по площади распространения изолированных и слоистых водоносных горизонтах);

в) ограниченных по площади распространения пластов (для некоторых схем закрытых и полузакрытых водоносных структур).

Аналитические решения для расчета водозаборов в более сложных природных условиях приведены в ряде специальных монографий и статей. При весьма сложных природных условиях или недостаточно полной гидрогеологической информации следует применять другие методы расчета (аналоговое или численное моделирование, гидравлические методы и др.).

5.3. Общая расчетная зависимость для определения понижений уровней подземных вод в любой точке водоносного горизонта может быть представлена следующим образом:

для безнапорных водоносных горизонтов

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.); (5)

для напорных водоносных горизонтов

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.). (6)

Здесь Q - суммарный дебит водозабора; k - коэффициент фильтрации водовмещающих пород, т - мощность водоносного горизонта; km - водопроводимость водоносного горизонта, he - естественная (до начала откачки) мощность грунтового потока, гидравлическое сопротивление, зависящее от гидрогеологических условий и типа водозаборного сооружения.

При определении понижения уровня подземных вод непосредственно в скважине или шахтном колодце в формулах (5) и (6) следует принимать

R = R0+ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.), (7)

где Ro - значения гидравлического сопротивления R в точке расположения скважины (колодца); ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.) - дополнительное сопротивление, учитывающее фильтрационное несовершенство скважины или колодца, ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.) = Qo/Q - отношение расхода рассматриваемой скважины Qo к суммарному расходу водозабора Q.

Расход водозаборного сооружения определяется по следующим зависимостям:

для безнапорных водоносных горизонтов

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.); (8)

для напорных водоносных горизонтов

ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.). (9)

Здесь Sдоп - максимально допустимое понижение уровня подземных вод.

Указания по методике определения величин R, Rо даны в табл. 21, 23 и др.; ПОСОБИЕ по проектированию сооружений для забора подземных вод (к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.) в формулах (8) и (9) должна определяться для скважин (колодцев), работающих на наиболее нагруженном участке водозабора, где ожидается наибольшее понижение уровня подземных вод.