СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ - Расчет устойчивости сооружений на нескальных основаниях

Содержание материала

3.4. В расчетах устойчивости гравитационных сооружений на нескальных основаниях следует рассматривать возможность потери устойчивости по схемам плоского, смешанного и глубинного сдвигов. Выбор схемы сдвига в зависимости от вида сооружения, классификационной характеристики основания, схемы загружения и других факторов производится по указаниям пп.3.5, 3.9 и 3.11.

Перечисленные схемы сдвига могут иметь место как при поступательной форме сдвига, так и при сдвиге с поворотом в плане.

Для сооружений, основанием которых являются естественные или искусственные откосы или их гребни, необходимо также рассматривать схему общего обрушения откоса вместе с расположенным на нем сооружением.

3.5. Расчет устойчивости гравитационных сооружений (кроме портовых), основания которых сложены песчаными, крупнообломочными, твердыми и полутвердыми пылевато-глинистыми грунтами, следует производить только по схеме плоского сдвига при выполнении условия

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ                                                            (4)

В случаях, если основания сложены туго– и мягкопластичными пылевато-глинистыми грунтами, кроме условия (4) следует выполнять условия:

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ                                                 (5)

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ                                                       (6)

В формулах (4) – (6) :

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ число моделирования;

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ – максимальное нормальное напряжение в угловой точке под подошвой сооружения (с низовой стороны);

b – размер стороны (ширина) прямоугольной подошвы сооружения, параллельной сдвигающей силе (без учета длины анкерного понура);

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ – удельный вес грунта основания, принимаемый ниже уровня воды с учетом ее взвешивающего действия;

N0 безразмерное число, принимаемое для плотных лесков равным 1, для остальных грунтов – равным 3. Для всех грунтов оснований сооружений I и II классов N0, как правило, следует уточнять по результатам экспериментальных исследований методом сдвига штампов в котлованах сооружений;

tgНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ – расчетное значение коэффициента сдвига;

tgНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ· с1 – то же, что в п. 2.7;

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ – среднее нормальное напряжение по подошве сооружения;

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ – коэффициент степени консолидации;

k – коэффициент фильтрации;

е – коэффициент пористости грунта в естественном состоянии;

t0 время возведения сооружения;

а – коэффициент уплотнения;

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ – удельный вес воды;

h0 – расчетная толщина консолидируемого слоя, принимаемая для сооружения с шириной подошвы b, на части которой bd расположен дренаж, равной:

а) для однослойного основания:

при наличии водоупора, залегающего на глубине h1 (h1 Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙНc; Нc см. п. 7.9),

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ                                                            (7)

при залегании в основании дренирующего слоя на глубине h1 (h1 Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙНc)

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ                                                           (8)

б) для двухслойного основания с толщинами слоев h1 и h2:

при наличии водоупора и при k1Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙk2 (h1 + h2Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ Нc)

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ                                                   (9)

при наличии дренирующего слоя на глубине h1 + h2 (h1 + h2Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ Нc)

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ                                                   (10)

Примечание. Указания настоящего пункта не распространяются на случаи, когда особенности конструкции сооружения и геологического строения основания, а также распределение нагрузок предопределяют глубинный сдвиг.

3.6. При расчете устойчивости сооружения по схеме плоского сдвига за расчетную поверхность сдвига следует принимать:

при плоской подошве сооружения – плоскость опирания сооружения на основание с обязательной проверкой устойчивости по горизонтальной плоскости сдвига, проходящей через верховой край подошвы;

при наличии в подошве сооружения верхового и низового зубьев: при глубине заложения верхового зуба, равной или большей низового, – плоскость, проходящую через подошву зубьев, а также горизонтальную плоскость, проходящую по подошве верхового зуба; при глубине заложения низового зуба более глубины заложения верхового зуба – горизонтальную плоскость, проходящую по подошве верхового зуба (при этом все силы следует относить к указанной плоскости, за исключением пассивного давления грунта со стороны нижнего бьефа, которое надлежит определять по всей глубине низового зуба);

при наличии в основании сооружения каменной постели – плоскости, проходящие по контакту сооружения с постелью и постели с грунтом; при наличии у каменной постели заглубления в грунт следует рассматривать также наклонные плоскости или ломаные поверхности, проходящие через постель;

для гравитационных сооружений на континентальном шельфе при наличии в их подошве ребер («юбок» и внутренних ребер) - плоскости, проходящие в контактной области частично в пределах ребер, частично по контакту подошвы с грунтом основания;

при наличии в основании зон, слоев или прослоек слабых грунтов, в том числе в зонах промораживания-оттаивания, следует дополнительно оценить степень устойчивости сооружения применительно к расчетным плоскостям, проходящим в этих зонах или слоях.

(Измененная редакция, Изм. № 1)

3.7. При расчете устойчивости сооружений по схеме плоского сдвига (без поворота) при горизонтальной плоскости сдвига R = Rpl и F в условии (3) следует определять по формулам:

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ                                  (11)

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ                                                   (12)

где Rpl расчетное значение предельного сопротивления при плоском сдвиге;

Р – сумма вертикальных составляющих расчетных нагрузок (включая противодавление);

tgНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ1 характеристики грунта по расчетной поверхности сдвига, определяемые по указаниям разд. 2;

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ – коэффициент условий работы, учитывающий зависимость реактивного давления грунта с низовой стороны сооружения от горизонтального смещения сооружения при потере им устойчивости, принимаемый по результатам экспериментальных исследований; при их отсутствии значение Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ следует принимать: для всех видов сооружений, кроме портовых. – 0,7, для портовых – 1;

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ,Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ – соответственно расчетные значения горизонтальных составляющих силы пассивного давления грунта с низовой стороны сооружения и активного давления грунта с парковой стороны, определяемые по указаниям СНиП II–55–79; при определении Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ,Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ ниже уровня воды следует учитывать ее взвешивающее действие на грунт, а также влияние фильтрационных сил;

Аg площадь горизонтальной проекции подошвы сооружения, в пределах которой учитывается сцепление;

Rg горизонтальная составляющая силы сопротивления свай, анкеров и т. д.;

F – расчетное значение сдвигающей силы;

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ – суммы горизонтальных составляющих расчетных значений активных сил, действующих соответственно со стороны верховой и низовой граней сооружения, за исключением активного давления грунта.

Примечания: 1.В случае наклонной плоскости сдвига при определении Rpl и F силы проектируются на эту плоскость и на нормаль к ней.

2. Для вертикально– и наклонно–слоистых оснований tgНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ·и с1 следует определять по обязательному приложению 5 как средневзвешенные значения характеристик грунтов всех слоев с учетом перераспределения нормальных контактных напряжений между слоями пропорционально их модулям деформации.

3. Под низовой стороной сооружения понимается та, в направлении которой проверяется возможность сдвига.

4. Для портовых сооружений I класса величины tgНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ·и с1 по контакту сооружения с каменной постелью следует определять по результатам экспериментальных исследований. Для портовых сооружений II–IV классов, а также I класса на стадии технико–экономического обоснования строительства допускается принимать по контакту сооружение – каменная наброска – tgНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ = 0,6, с1 = 0, по поверхности сдвига внутри каменной наброски – tgНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ = 0,85, с1 = 0.

5. При наличии постели под сооружением пассивное давление грунта, как правило, следует определять только ниже подошвы сооружения с учетом веса вышележащего грунта.

3.8. В случае, если расчетная сдвигающая сила F приложена с эксцентриситетом в плоскости подошвы еF Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ, расчет устойчивости сооружений следует производить по схеме плоского сдвига с поворотом в плане ( l и b – размеры сторон прямоугольной подошвы сооружения). Эксцентриситет еF и силу предельного сопротивления сдвигу при плоском сдвиге с поворотом Rpl,t следует определять по указаниям, приведенным в рекомендуемом приложении 6.

3.9. Расчет устойчивости сооружений по схеме смешанного сдвига следует производить для сооружений на однородных основаниях во всех случаях, если не соблюдаются условия, приведенные в п. 3.5. При этом сопротивление основания сдвигу следует принимать равным сумме сопротивлений на участках плоского сдвига и сдвига с выпором (черт. 1). Сила предельного сопротивления при расчете устойчивости сооружений по схеме смешанного сдвига Rcom при поступательной форме сдвига определяется по формуле

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ                                       (13)

где Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ – то же, что в формуле (5);

tgНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ·и с1

b1,b2 расчетные значения ширины участков подошвы сооружения, на которых происходят сдвиг с выпором и плоский сдвиг;

Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ предельное касательное напряжение на участке сдвига с выпором, определяемое в соответствии с указаниями рекомендуемого приложения 7;

l – размер стороны прямоугольной подошвы сооружения, перпендикулярной сдвигающей силе.

Схема к расчету несущей способности основания и устойчивости сооружения при
смешанном сдвиге Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

Черт. 1. Схема к расчету несущей способности основания и устойчивости сооружения при смешанном сдвиге

аб – участок плоского сдвига; бв – участок сдвига с выпором; бвгдб– зона выпора

Значения b1 следует определять в зависимости от smax (с низовой стороны) по черт. 2. При эксцентриситете еp нормальной силы Р в сторону нижнего бьефа в формуле (13) вместо b, b1 и b2 следует принимать b¢, b1¢ и b2¢ (где b' = b – 2еp, а Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ); эксцентриситет в сторону верхнего бьефа в расчетах не учитывается.

Графики для определения ширины участка подошвы сооружения b1, на котором происходит сдвиг с выпором грунта основания Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

Черт. 2. Графики для определения ширины участка подошвы сооружения b1, на котором происходит сдвиг с выпором грунта основания

а – для грунтов с коэффициентом сдвига tgНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ> 0,45; б – то же, при tgyI<0,45; Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ среднее нормальное напряжение в подошве сооружений, при котором происходит разрушение основания от одной вертикальной нагрузки (Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ определяется по рекомендуемому приложению 5; Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ).

Для портовых сооружений и сооружений на континентальном шельфе расчеты устойчивости по схеме смешанного сдвига допускается не производить.

(Измененная редакция, Изм. № 1)

3.10. При смешанном сдвиге с поворотом в плане предельная сдвигающая сила принимается равной Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ, где Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ– коэффициент, определяемый по указаниям рекомендуемого приложения 6, Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ– то же, что в формуле (13).

3.11. Расчет устойчивости сооружений по схеме глубинного сдвига следует производить:

а) для всех типов сооружений, несущих только вертикальную нагрузку, а для портовых сооружений – независимо от характера нагрузки;

б) при невыполнении требований п. 3.5 для сооружений, несущих вертикальную и горизонтальную нагрузки и расположенных на неоднородных основаниях.

3.12. Расчет устойчивости гравитационных сооружений (кроме портовых) по схеме глубинного сдвига допускается производить по рекомендуемому приложению 7.

Расчет устойчивости портовых сооружений, как правило, следует производить двумя методами, исходя из поступательного перемещения сдвигаемого массива грунта вместе с сооружением по ломаным плоскостям сдвига и из вращательного их перемещения по круглоцилиндрической поверхности сдвига в соответствии с рекомендуемым приложением 8, а при специальном обосновании – одним из указанных методов.

При использовании обоих методов определяющими являются результаты расчета устойчивости по тому методу, по которому условие (3) показывает меньшую надежность сооружения.

3.13. При расчете устойчивости сооружений на основаниях, сложенных глинистыми грунтами со степенью влажности SrНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ0,85 и коэффициентом степени консолидации Нормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ< 4 (см. п. 3.5), следует учитывать нестабилизированное состояние грунта основания одним из способов:

- принимая характеристики прочности tgНормативные документы:Законодательство в строительстве, СНиПы, СНиП 2.02.02–85 ОСНОВАНИЯ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙи сI, соответствующие степени консолидации грунта основания к расчетному моменту (т.е. полным напряжениям), или su,I, и не учитывая при этом в расчетах наличие избыточного порового давления, обусловленного консолидацией грунта;

- учитывая по поверхности сдвига действие избыточного порового давления, возникающего при консолидации грунта (определяемого экспериментальным или расчетным путем), и принимая характеристики прочности tg jI и сI соответствующие полностью консолидированному состоянию грунта (т.е. эффективным напряжениям).

При расчете устойчивости сооружений на водонасыщенных нескальных основаниях, воспринимающих кроме статических также динамические нагрузки, следует учитывать влияние этих нагрузок на несущую способность грунтов, приводящее к снижению сопротивления недренированному сдвигу связных грунтов и возникновению избыточного порового давления в несвязных грунтах.